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The Py Equations

Kinetic Description of Particle Systems

We considered a particle distribution described at the kinetic level
by a kinetic distribution function (or kinetic density or angular
flux) F = F(x, <, t), which gives the number of particles

e At position x € R3,
e Traveling in direction Q € S,

And time t > 0.
For simplicity, we assume

e Particles scatter isotropically off a background material
medium, characterized a scattering cross-section o = o(x).
o Particles are mono-energetic, with speed |v|=1
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The Py Equations

The Transport Equation

e The evolution of F = F(x,€,t) is governed by a kinetic
transport equation:

OF +Q-ViF +0F = 41<F>.

v

e Notation: Angle brackets denote integration of the angular
variable over the sphere S2.

e An important quantity of is ¢ = (F), the concentration (or
density or scalar flux), which is conserved:

0:6+ V- (QF) = 0|
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20

e ’ (pF(u(x,t),-)) =u ‘

Moment Equations

Let p = p(Q2) be a vector of functions of Q.

Let u(x, t) := (pF(x,€,t)) be moments of F with respect to
p.

To derive moment equations, multiply the transport equation
by p and integrate over all angles:

deu + V- (QpF) + o (pF) = % (p) 6.

To close the system, one must prescribe an ansatz to
approximate F—

(F(x,9,t) ~ F(u(x, 1), Q)|

—that satisfies the consistency relation
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The Spherical Harmonic (or Py ) Closure

e For the Py closure:
e Components of p are spherical harmonic polynomials up to
degree N.
e The reconstruction F is a linear combination of components of
p:

Flu(x,1),Q) =c(x,t)"p

e Consistency relation implies:

um(pp7)e.

e The zeroth order moment is just ¢:

0e6+ V- (QF) = 0|
o ss., Lo Alamos
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Negative Solutions

e What is known?
1. Solutions F to the transport equation are non-negative.
2. Solutions to the Py equations in 1-D have positive particle
concentrations.
3. Solutions to the Py equations in multi-D can have negative
particle concentrations.

e Insight can be gained even from the one-dimensional setting.
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Analysis in One Dimensional, Slab Geometries

e Decompose Q into Cartesian components: Q = (u,71,¢)"

In slab geometries F = F(x, p, t) satisfies

OiF + pdF + oF = %¢.

The angular variable 1 € [—1, 1] is the cosine between the
x-axis and the direction of particle travel

Notation: Angled brackets in 1-D denote integration over p.
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Negative Solutions

The Py Equations in One Dimension

e The Py equations take the form

Otu + Adyu = —oQu ‘

where the flux matrix A and the relaxation matrix Q are
given by

_n+1
C2n+1
Qnm - 5nm(]- - 5n,0)

nm 6n+1,m + 5n—1,m

_n
2n+1

e Ais diagonalizable: A = LAR. Eigenvalues {\g--- Ay} form
the N + 1-point Gauss-Legendre quadrature set.
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Negative Solutions

Discrete Ordinate Formulation

e A particular choice of right and left eigenvectors diagonalizes
the Py equations into an equivalent discrete ordinate form:

0w + NOyW + ow = gegb ,

where e = [1,...,1]7.

e The n-th component of w is a solution to the transport
equation along the direction p = A,, but with initial condition

Fle.0) = <7 (x.0)p() = (") (p7F(x.-.0)) p(1).
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Discrete Ordinate Formulation

e Density is a weighted sum of components of w:
p=a'w, (1)

where components of a are Gauss-Legendre quadrature
weights.
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Negative Solutions

A Semi-Implicit, Upwind (SIU) Scheme

e First order, semi-implicit method based on upwinding:

S
w;

—w_
s+1 _ S _ + J—
Wi = w; AtA <x )

wS . —w?s
—_ j+1 J s+1 s+1

e |n terms of the moments:

u: . —us 1
utl =i — ArA | L
J J 2Ax

ul,; —2ul4ui
— At|A| ( J+1 QAJX J 1) _ Atoust!

_Where |A| = LIA[R and NE = T(NE|A]).
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Positivity Preserving Property

Proposition

The SIU scheme preserves the positivity of the components of w
and the density ¢ under the CFL condition At < Ax.

However, this result says nothing about the angular reconstruction
for values of u # Aj,.
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Numerical Example: the P; System

Apply SIU algorithm to a test problem with:
e Periodic boundary conditions.

e Initial condition for ¢ is

[ 20, x€(0.8,1.2),
(x,0) = { 0.0, x€[0,0.8]U[1.2,2.0],

e All other moments are initially zero.
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Initial Implementation

(a) Components of w

(b) Concentration, ¢
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(c) minger—1,11 F(u(x,1),4) (d) Angular reconstruction at

x = 1.

Figure: P; Results
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Variational Formulation of the Py Closure

e The Py closure can also be formulated as the solution to the
following optimization problem

o1
minimize §<|f|2>

subject to  (pf) = (u)
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The Positive-Preserving Closure

A New, Modified Closure

e IDEA: Modify the Py closure by adding an inequality
constraint to the optimization problem

1
minimize §<\f|2>
subject to (pf) =(u), f >0

e Enforcing positivity everywhere is not possible. Discretize the
problem on a quadrature set Q € [—1,1]:

o1
minimize > Z wie[F(Q)]?
QeQ
subject to Y wip()F(Q) = (u) , F(U) >0V Q€ Q
Q,eQ
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The Optimization

—o— funciion values. —— functon values
M + LD reconstruction 4 LD reconstruction

+ _oplimization reconsiruction + _optimization reconsiruction
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Figure: Example optimization output.
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Kinetic Scheme

e Challenge: Ensure positivity is not destroyed by the scheme.
of cells /; = [xj_1/2, Xi11/2] of width Ax.

e Semi-discrete, finite volume formulation:

Fit12—Fic1p2

O:Fi + 1 Ax

o
+0Fi:§¢i
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Initial Implementation: 1-D

Kinetic Scheme

e Determine pointwise edges values with upwinding

Fix — Fi—1k
0+ F; k gylr 1=k
t l,k‘i‘max(ﬂ ) ) Ax
, Fit1,6 — Fik o
+ mln(uk,O)% + UFi,k = §¢,

e Apply the quadrature, using the equality constraints to
evaluate the moments and relaxation terms:

— Fi— Fit1k — Fi
8tu,+2w 1k+ZWk#:QUf

Hk>0 Hk<0
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Properties of the Algorithm

e GOOD:

1. Closure is local.
2. Reverts back to standard Py when positivity is not violated.

e BAD

1. Only first-order.
2. NOT asymptotic preserving.

o
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Numerical Example: Pulse in One Dimension

e Periodic boundary conditions.
e Density ¢ is initially a delta function at x = 1.

o All other moments initially zero.
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Figure: Results, 1-D Pulse, t = 1.0.
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1-D Pulse Results

Initial Implementation: 2-D
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1-D Pulse Results
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Implementation: 2-D

o Recall Q = [i,n,¢]".

¢ In two dimensions, the transport equation is

OiF + pdxF + 1o, F + oF = %gﬂ)

e Choose a quadrature set @ and evolve F along directions
Mk, Mk € Q.

W Center for - Los Alamos
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Implementation: 2-D

e A first-order, finite volume:

Fijk — Fic1, Fiijk — Fijk

O¢Fijk + max(pu, 0) Ax + min(y, 0) Ax
Fiik— Fij Fiivik— Fj
+ max(ipy, 0) —LE— =k Ay - +min(nk,0)—'”’+1’2y i
g
+0ijKk= EQSU

o Integrate this discretization against p; apply constraints:

it Y w Fijk — ’1vlk_|_ 3w M
ij
X
1k >0,m Hk<0,m
P Y W Fijk — Fij-1k n o, Fiirk = Fijik
Digk 7 Tij=1k E AP LA AL LS
A A
Hksmk>0 y Hk k<0 4
bt = Quij ‘e
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Numerical Example: Line Source in Two Dimension

e Periodic boundary conditions.
e Density ¢ is initially a delta function at x =y = 0.

o All other moments initially zero.
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(a) standard closure (b) modified closure

Figure: Linesource Problem, t = 1.0.
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Figure: Linesource Problem, t = 1.0.
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Figure: Linesource Problem, t = 10.0.
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Future Work

e Higher Order Discretizations
e Asymptotic Preserving Implementation.

e Parallelization.
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